www. a2zpapers.com

Class-BA/B.Sc II (Sem. IV)

 Subject -MathematicsPaper- I (Statics and Solid Geometry) Time Allowed, 3 Hrs

Maximum Marks :50
Note :- Hempt any five questions selecting atleast two fron each section.

Section - A

1. (a) The greatest and east resultant that two forces can have are of fragnityde P and Q respectively. Show that when ey act an angle θ, their resultant is of magnitude

$$
\sqrt{\mathrm{P}^{2} \cos ^{2} \frac{\theta}{2}+\mathrm{Q}^{2} \sin ^{2} \frac{\theta}{2}}
$$

(b) Two forces P and Q acting paralle to the length and base of a smooth inclined plane respectively. Would each of them singly support a weight w on the plane, prove that $\frac{1}{\mathrm{p}^{2}}-\frac{1}{\mathrm{Q}^{2}}=\frac{1}{\mathrm{~W}^{2}}$
2. (a) Forces $P, 3 P, 2 P, 5 P$ act along the sides $A B, B C$, $C D$ and $D A$ of square $A B C D$. Find the magnitude and direction of their resultant and prove that it meets $A D$ produced at point E such that $A E: E D$ $=5: 4$.
(b) A ring of weight W which can slide freely on a smooth vertical circle, is suspended by a string

www . a 2 zpapers. com

attached to highest point. If the thread subtends an angle Q at the centre, find the tension in the thread and the reaction of circle on the ring. $(5,5)$

State and prove Varignon's theorem.
$A B C$ is triangle and G is its centroid. A force R
acts along AG. Resolve R into two forces
parallel to it and acting at B and C respectively. $(6,4)$
4. (a) A weight can be just supported on a rough inclinedrlane by a force P acting along the plane by aforce Q acting horizontally. Show that the weight io $\frac{\mathrm{PQ}}{\left.\mathrm{Q}^{2} \operatorname{Sec}^{2} \lambda-\mathrm{P}^{2}\right)^{1 / 2}}, \lambda$ being the
(b) A uniform rod rests ifa sertical plane with in a rough hemispherical bovi whose radius is equal to the length of the rod. If wist coefficient of friction between the rod and the bswl; Show that in limiting equilibrium the inclination of the rod to the horizontal is $\tan ^{-1}\left(\frac{4 \mu}{3-\mu^{2}}\right)$.

Section - B

5. (a) Find the equation of cylinder whose generators are parallel to line $\frac{x}{l}=\frac{y}{m}=\frac{z}{n}$ and intersect the conio $a x^{2}+2 h x y+b y^{2}=1, z=0$.

www. a2zpapers. com

(b) Find the equation of quadric cylinder with generators parallel to x-axis and passing through the curve $a x^{2}+b y^{2}+c z^{2}=1, \mid x+m y+n z=P .(5,5)$
6. (a) Find the equation of the enveloping cylinder of . Po $x^{2}+y^{2}+z^{2}+2 x+2 y+2 z+2=0$ and whose gerterators are parallel to the line $\frac{x}{1}+\frac{y}{-1}+\frac{z}{1}$.
(b) Prove thatthe plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=0$ cuts the cone $y z+z x+x y=$ orn pergendicular lines if $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ $=0$.
7. (a) The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the co-ordinate axes in A, B, C. Prove that the quation of cone generated by the line drawn from (tio meet the circle $A B C$ is $y z\left(\frac{b}{c}+\frac{c}{b}\right)+z x\left(\frac{c}{a}+\frac{a}{c}\right)+x y$ $\left(\frac{a}{b}+\frac{b}{a}\right)=0$.
(b) Find the equation of the cone whose vertex is at
the origin and guiding curve is $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{1}=1$,
$x+y+z=1$.

www. a2 zpapers. com

8. (a) If $\frac{x}{1}=\frac{y}{z}=\frac{z}{1}$ represents one set of three mutually prependicular generators of cone $11 \mathrm{yz}+6 \mathrm{zx}-$ $14 x y=0$. Find the equation of other two.
(b) λ Prove that the equation
$a x^{2}+b y^{2}+c z^{2}+2 u x+2 v y+2 w z+d=0$ represents
a cene iff $\frac{u^{2}}{a}+\frac{v^{2}}{b}+\frac{w^{2}}{c}=d$.
